阿基米德

《沉思的阿基米德》（1620年费地英语Domenico Fetti画作）

传记

《阿基米德之死》 （1815年，画作）[9]

Cicero Discovering the Tomb of Archimedes （1805年，本杰明·韦斯特画作） by

“阿基米德传”的标准版本，在他死后许久才由古罗马历史学家写就。锡拉库扎攻城由波利比烏斯在记于其《通史》（英文：“Universal History”）中，大约在阿基米德死后70年写就，此后被普鲁塔克和蒂托·李维引用。此文主要着墨与其为保卫城市所建的“战争机器”，未有详述阿基米德为人。[14] 七巧板的圖形遊戲，研究以十四片碎片組成正方形的所有拼法（一共17152种方法，并可分成536个大类），成為組合學最早的開端。

著作

• 《》
• 《》：此書討論物體的浮力，研究了旋轉拋物體在流體中的穩定性
• 《》：此書從幾個定義和公理出發，推出關於球與圓柱面積和體積等50多個命題
• 《》：此書從幾個基本假設出發，通過嚴格的幾何方法論證力學原理，並求出若干平面圖形的重心
• 數沙者英语The Sand Reckoner》：此書主要講述設計一種可以表示任何大數目的方法
• 槓桿論
• 劈錐曲面體與球體論
• 《》
• 螺線論英语On Spirals

注释

a. ^ In the preface to On Spirals addressed to Dositheus of Pelusium, Archimedes says that "many years have elapsed since Conon's death." Conon of Samos lived c. 280–220 BC, suggesting that Archimedes may have been an older man when writing some of his works.

b. ^ The treatises by Archimedes known to exist only through references in the works of other authors are: On Sphere-Making and a work on polyhedra mentioned by Pappus of Alexandria; Catoptrica, a work on optics mentioned by Theon of Alexandria; Principles, addressed to Zeuxippus and explaining the number system used in The Sand Reckoner; On Balances and Levers; On Centers of Gravity; On the Calendar. Of the surviving works by Archimedes, T. L. Heath offers the following suggestion as to the order in which they were written: On the Equilibrium of Planes I, The Quadrature of the Parabola, On the Equilibrium of Planes II, On the Sphere and the Cylinder I, II, On Spirals, On Conoids and Spheroids, On Floating Bodies I, II, On the Measurement of a Circle, The Sand Reckoner.

c. ^ Boyer, Carl Benjamin A History of Mathematics (1991) ISBN 0-471-54397-7 "Arabic scholars inform us that the familiar area formula for a triangle in terms of its three sides, usually known as Heron's formula — k = s(s − a)(s − b)(s − c), where s is the semiperimeter — was known to Archimedes several centuries before Heron lived. Arabic scholars also attribute to Archimedes the 'theorem on the broken chord' ... Archimedes is reported by the Arabs to have given several proofs of the theorem."

d. ^ "It was usual to smear the seams or even the whole hull with pitch or with pitch and wax". In Νεκρικοὶ Διάλογοι (Dialogues of the Dead), Lucian refers to coating the seams of a skiff with wax, a reference to pitch (tar) or wax.[16]

参考文献

1. ^ Knorr, Wilbur R. Archimedes and the spirals: The heuristic background. (愛思唯爾). 1978, 5 (1): 43–75. "To be sure, Pappus does twice mention the theorem on the tangent to the spiral [IV, 36, 54]. But in both instances the issue is Archimedes' inappropriate use of a "solid neusis," that is, of a construction involving the sections of solids, in the solution of a plane problem. Yet Pappus' own resolution of the difficulty [IV, 54] is by his own classification a "solid" method, as it makes use of conic sections." (page 48)
2. ^ Archimedes (c.287 - c.212 BC). BBC History. [2012-06-07].
3. ^ Calinger, Ronald. A Contextual History of Mathematics. Prentice-Hall. 1999: 150. ISBN 0-02-318285-7. Shortly after Euclid, compiler of the definitive textbook, came Archimedes of Syracuse (ca. 287 212 BC), the most original and profound mathematician of antiquity.
4. ^ Archimedes of Syracuse. The MacTutor History of Mathematics archive. 1999年1月 [2008-06-09].
5. ^ Bell, Eric Temple. Men of mathematics 1st Touchstone. Simon & Schuster. October 15, 1986. ISBN 9780671628185.
6. ^ , Works of Archimedes, 1897
7. ^ 普魯塔克. Parallel Lives Complete e-text from Gutenberg.org. 古腾堡计划. [2007-07-23].
8. ^ O'Connor, J.J.; Robertson, E.F. Archimedes of Syracuse. University of St Andrews. [2007-01-02]. （原始内容存档于6 February 2007）.
9. ^ The Death of Archimedes: Illustrations. math.nyu.edu. 纽约大学.
10. Rorres, Chris. Death of Archimedes: Sources. 科朗数学研究所. [2007-01-02]. （原始内容存档于10 December 2006）.
11. ^ Mary Jaeger. Archimedes and the Roman Imagination, p. 113.
12. ^ Rorres, Chris. Tomb of Archimedes: Sources. Courant Institute of Mathematical Sciences. [2007-01-02]. （原始内容存档于9 December 2006）.
13. ^ Rorres, Chris. Tomb of Archimedes – Illustrations. Courant Institute of Mathematical Sciences. [2011-03-15].
14. ^ Rorres, Chris. Siege of Syracuse. Courant Institute of Mathematical Sciences. [2007-07-23]. （原始内容存档于9 June 2007）.
15. ^ 阿基米德原著 《量圆》 《中国数学史大系》 副卷第一 第二章 第三编 希腊 197-203页
16. ^ Casson, Lionel. Ships and seamanship in the ancient world. Baltimore: The Johns Hopkins University Press. 1995: 211–212. ISBN 978-0-8018-5130-8.

延伸阅读

http://www.wilbourhall.org 《阿基米德著作》Heiberg版的PDF扫描件，现属公共领域]